The transmission functions for the Johnson B,V,R,I filters are shown from left to right in blue, green, red and magenta respectively and have been scaled to peak at 100% transmission. The Kepler bandpass is shown in black which peaks at approximately 70% throughput. The CoRoT whitelight bandpass is shown by the dot-dashed line. The MOST bandpass is shown by the dashed line. The spectrum for an A2V star is shown in cyan, which peaks in the UV and the spectrum for a M2V star is shown in orange which peaks in the infrared. The two spectra have been scaled to have equal flux in the Johnson V filter.
If two stars of two different spectral types have equal brightness in the V filter, then one would like to know what is the difference in flux over the Kepler bandpass for the two stars. One starts by defining that a G2V star will have equal brightness in the V filter and Kepler bandpass. This definition provides a natural way to scale the artificial spectra and to compute the flux difference in the V filter and Kepler bandpass as a function of spectral type. The Figure demonstrates how a hot A2V and cool M2V star with equal brightness in the V filter can have quite different brightnesses through the Kepler bandpass with extends to the near infrared part of the spectrum.
Friday, May 30, 2008
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment